CD44 exhibits a cell type dependent interaction with triton X-100 insoluble, lipid rich, plasma membrane domains.

نویسندگان

  • S J Neame
  • C R Uff
  • H Sheikh
  • S C Wheatley
  • C M Isacke
چکیده

CD44 is an abundant, widely expressed transmembrane glycoprotein which can act as a receptor for the extracellular matrix glycosaminoglycan, hyaluronan. Biochemical and morphological studies have demonstrated that in fibroblasts a significant of the CD44 population is resistant to Triton X-100 extraction and that the detergent insoluble protein is co-localized with components of the cortical cytoskeleton. Surprisingly, this distribution is not abrogated upon deletion of the CD44 cytoplasmic tail indicating that mechanisms other than a direct interaction with the cytoskeleton can regulate CD44. In this manuscript, the mechanisms underlying this detergent-insoluble association are further investigated. There was no evidence that the Triton X-100 insolubility of CD44 resulted from homotypic aggregation, an association with hyaluronan or from a direct, or indirect, association with the cytoskeleton. Instead, evidence is presented that the detergent insolubility of fibroblast CD44 at 4 degrees C results from an association of the CD44 transmembrane domain with Triton X-100 resistant, lipid rich, plasma membrane domains. The proportion of the CD44 found in these Triton X-100 insoluble structures is dependent upon cell type and cannot be altered by changing cell motility or extracellular matrix associations. These studies provide evidence for a novel mechanism regulating this adhesion protein in the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmembrane domain of CD44 is required for its detergent insolubility in fibroblasts.

The hyaluronan receptor CD44 is an abundant glycoprotein expressed on a variety of different cell types. In fibroblasts a significant portion of receptor molecules remain in the detergent-insoluble fraction after Triton X-100 extraction. Detergent insolubility of these CD44 molecules has been interpreted to reflect their association with the cytoskeleton. In this study we examined the structura...

متن کامل

Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).

The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich ...

متن کامل

A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with triton X-100-insoluble cell skeleton

The Triton X-100-insoluble skeleton of baby hamster kidney BHK cells consists of the nucleus, intermediate-size filaments, and actin fibers. By transmission electron microscopy, membrane fragments were found to be associated with these insoluble structures. When radioiodinated or [3H]glucosamine-labeled cells were extracted with 0.5% Triton, most plasma membrane glycoproteins were solubilized e...

متن کامل

Cytoskeleton-dependent membrane domain segregation during neutrophil polarization.

On treatment with chemoattractant, the neutrophil plasma membrane becomes organized into detergent-resistant membrane domains (DRMs), the distribution of which is intimately correlated with cell polarization. Plasma membrane at the front of polarized cells is susceptible to extraction by cold Triton X-100, whereas membrane at the rear is resistant to extraction. After cold Triton X-100 extracti...

متن کامل

The cytoplasmic tail of CD44 is required for basolateral localization in epithelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts

A number of recent reports on the trafficking of receptor proteins in MDCK epithelial cells have provided evidence that delivery to the basolateral domain requires a specific targeting sequence and that deletion of this sequence results in constitutive expression on the apical surface. To date, these studies have concentrated on receptors which are competent for internalization via the clathrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 108 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1995